Imperial College
London

Lecture 11

Additional Topics

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 1

5-stage Pipelining

IM —D-[RF j:a_ﬂﬂj RF

¢ —r) /> —>rr @ —rr —>

o1 oo o3 [y Cos

The DATA inpu;{(o a flipflop or register must not change at the same

time as the CLOCK.
J by ts
<« > <« »
DATA Q
P CLOCK | | |
CLOCK
——— > C1
DATA _ | L[] [
Q | P
s
Setup Time: DATA must reach its new value at least t5 before the CLOCKT edge.
Hold Time: DATA must be held constant for at least , after the CLOCKT edge.
1

Maximum processor clock frequency:

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 2

Deep Pipelining

HE B
—> +—> —> —> —>
Cor Cpo Cp3 Cos Cos
logic logic logic P— p—= = = = =— - logic
< > D EE—— < > <
tpl tp2 tp3 Tpn—l

logic

A

[
»

ton

e Cycle per instruction (CPI) for pipelined processor > 1 (e.g. 1.25), but higher clock frequency.

* Increase clock frequency by adding more pipeline stages by reducing worst-case t,,.

* Deeper pipeline creates more data and control hazards, and more complex

detection/mitigation hardware.

* Register setup time also results in diminishing return.

 Example: 2015 Intel i7 uses 19-stage pipeline; ARM processor typically uses 13—stage pipeline.

PYKC 3 Dec 2024

EIE2 Instruction Architectures & Compilers

Lecture 11 Slide 3

An Example on Pipelining

* Asingle-cycle processor with a propagation delay of 750ps is to be pipelined into N stages.

* Assume:
* Register overhead (i.e. setup time) is 90ps;
 Adding a pipeline stage does not increase hazard logic delay;
» 5 stage pipeline would result in a CPI of 1.25;
« Each additional pipeline stage add 0.1 to CPI due to branch and other hazards (stalling).

 How many pipeline stages gives best performance?

300 A
. . . . 750 A
* Cycle time (i.e. clock period) is: T, = T+ 90 ps. A 4 fa\a A
o 250
e CPl=1.25+0.1(N-5), for N > 5. = * ——T,
g 200 M P —aA— Instruction
* Instruction time = CPI X T, iz * Time
L 4 * o
150 L

T T T T
5 6 7 8 9 10 11 12
Based on: “Digital Design and Computer Architecture (RISC-V Edition)” N: # of pipeline Stages
by Sarah Harris and David Harris (H&H),

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 4

Simple branch prediction

So far, all branch instruction are assumed NOT TAKEN.
Increased pipeline stages results in higher penalty (flushing) if branch IS TAKEN.
Improve performance by adding ACCURATE branch prediction.

STATIC branch prediction — forward branch assumes NOT TAKEN; backward branch
assumed TAKEN.

SIMPLE DYNAMIC branch prediction — due historical information for prediction. The
simples is: Branch taken last time, predict will also be taken next time.

Maintain a table of branch instructions and what happened most recently.

The table is known as a branch target buffer which includes destination address of
branch and 1-bit history.

Taken Not Taken

predict predict
taken not taken

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 5

Two-bit Branch Predictor

addi sl, zero, 0 # sl = sum =0 * One-bit predictor:
addi s0, zero, 0 # s0 =1 =0 _ ,
addi t0, zero, 10 # t0 = 10 Predicts correctly@lasttlme.
1ol bge sO0, t0, done # i >= 107 Mispredictsfirstand last time.
10 add ~sl, sl, sO 4 sum = sum + il o Mispredicts first and last time of
fimes addi s0, s0, 1 #1 =1 + 1 P
J for # repeat loop the loop.
e * QOvercome this with a two-bit
predictor:

Strongly

Weakly Weakly Strongly

Taken Taken Not Taken Not Taken taken
predict predict predict predict
taken taken taken not taken not taken

 Four states = two-bits to encode the states.

* Mispredicts only the last branch of a loop.

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 6

Superscalar Processor

& & 4 &
CLK
PC RD [y A1
A2 | |
| | A I_ = A3 RD1 f— R
At . RD4[“ A1 RD1|_|
Instruction }: A5 Reg.lster j> | A2 RD2[] .
Memory A8 File RD2 < Data
RD5 [~ ’
Woe — Memory
WD1
WD2

* Two-way superscalar — execute TWO instructions on each cycle (CPI1 =0.5, IPC = 2).
e Instruction memory — 2 read ports, i.e. fetch 2 instructions per cycle.

* Two copies of the ALU.

* Register file double number of ports (i.e. 4 read ports and 2 write ports).

* Data memory —two read ports and two write ports.

* Two instructions progress through CPU at the same time.

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 7

Superscalar Processor - Example

| 2 | 3 | x) 5 [w | T | @

-
Time (cycles)

V =0 V V V 7
lw 87, 40(s0) L '[40 |: E+ §S
IM | |RF[e1 | DM RF
add s8, tl, t2 addg-[£2 E+ l =
v sl V V V 9
sub 89, sl, 83 SUb{ s3 |: E S
g andé é 2 2 s10

and sl10, s3, t4 ‘[L4 E‘ 1l

E N e
or sll, sl, t5 o i t5§E| ==

sw s5, 80(s2) S -[80 :E s5

* Instruction per cycle =2

* No data or control hazard in this code.

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 8

Superscalar Processor with data hazard

lw s8, 40(s0)
»

add s9, (s8) t1

sub s8, t2, t3
v.‘-"-».

and sl10, s4, 88

or sl1, t5, teé
¥

sw s7, 80(s11)

* Forwarding does not help @ instruction — need t

8

M

lw

RF

RF

s8 K

DM

tl "

:z

M

and :

or |i

e

RF

1 w0
oo

N O

rt
o

M

RF

S1l1

80 |

—

Time (cycles)

DM

RF

b

RF

—

o insert stall cyéle, then forwarding.

* Other dependencies handled by forwarding. 5 cycles to issue 6 instructions: IPC = 1.2.

PYKC 3 Dec 2024

EIE2 Instruction Architectures & Compilers

Lecture 11 Slide 9

Out-of-Order Superscalar Processor (1)

1 2 3 4 5 6 7 8
>
Time (cycles)
1w S0 v v VSB
lw s8, 40(s0) lw s8, 40(s0) : 40 :B— N
b IM RF £5 UM RF
or slii, t5, té6 = té :B— — B
) : M s11 7 ¥
add s9, (s8, tl sw s7, 80() == '[80 V%'; e
M RF DM Ri
sub s8, t2, t3 Two cycle latency { :D -
v between load and H H H H
use of s8
R s ..M s8 V ng
and s10, s4, (s8) add s9, tl o i —
4 M RF ., OM RF
or sll, t5, t6 _— '[t3 :B— — 122
¥ H H
F g andv =4 vle
sw s7, 80(sll) and sl10, s4, @ { s8 —
S’ M RF DM RF

* Cycle 1: @, and ghstsl instructions use s8. Therefore, g4 instruction jumps ahead.

* Cycle 2: j§ needs two cycle before data available. @ can’t issue. use s8, cannot
issue. Therefore, only § can be issued because S11 can be forwarded.

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 10

Out-of-Order Superscalar Processor (2)

lw s8, 40(s0)

add 59,{53} tl

sub s8, t2, t3
v

and sl0, s4,hég7

or sll, t5, te

sw s7, 80(s1D)

lw s8, 40 (s0)
or slil, t5, t6
sw s7,\80 ()

Two cycle latency
between load and
use of s8

add s9,

RAW
and sl10, s4, @

7 8

1 2 3 4 5 6
-
7 : " Time (cycles)
lw jg :B_v _VSB
M RF P : : DM RF
or 511
SW Sél : E I M s7 V
8 1 -
IM RF || [PM R
addv = v VSQ
1 e [Tlom|[|
IM | |RF £2 RF
sub _[- :B_: | |i[s8
andv_[S; _v sl0
M RF - DM RF

—

* Cycle 3: Now @ can be issued since s8 will be available, and can also go ahead.
* Cycle 4: The can be issued.

e Sixinstructions in four cycles, IPC = 1.5 — better than 1.2 before.

PYKC 3 Dec 2024

EIEZ2 Instruction Architectures & Compilers

Lecture 11 Slide 11

Topics not covered by this module

1. Computer arithmetics
- adders, multipliers, dividers

2. Bus interface (e.g. WishBone bus)
- Interface with main memory, peripherals etc.

3. Interrupt handling mechanism
- realtime applications, react to external events

4. Stack and Heap
- Memory management in high-level languages

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 12

RISC-V Specific Omissions

Control/Status Registers (CSRs)
Privileged mode vs User mode

Compressed instruction set (16-bit instructions)

N .

Floating point architecture (64-bit)

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 13

JAL instruction

Jal rd, label jump and link PC = JIA, rd = PC +4

N
31 (30(29(28|27|126|25|24|23|22|21(20 (19|18|17|16|15|14|13|12(11|10|9(8|7 [|6|5|4(3(2|1(0

Instruction
Formats

Jump [20] imm([10:1] [11] imm[19:12] rd opcode

e JAL instruction is used for subroutine calls. (Used in the REF program.)
e JTA =Jump Target Address = PC value + sighed immediate offset
 PCisloaded with the JTA

°* rd =return address = PC + 4, i.e. address of next instruction

* Note that the format of the immediate value is unusual. Bit O is always
0. In other word, offset is always an even number

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 14

JALR instruction

jalr rd, rsl, imm |jump and link register

PC=rsl +SignExt(imm), rd = PC + 4

Instruction

31 (30(29|28|27|126(25|24(23(22|121|20 |19|18|17|(16|15(14(13|12|11|10|9|8 |7 6/5(4|3(2|1(0
Formats
Immediate imm[11:0] rs1 funct3 rd opcode

 JALR instruction is also used for subroutine calls, but different from JAL.
* JTA =rsl + SignExt(imm), i.e. derived from source register rs1

 Note that the immediate offset is only 12 bit and it is sign-extended to
32-bits before adding to rs1

* Finally, rd stores the return address

o >
a_
» SPECIAL CASE, JALR zero, O(ra) or JALR x0, 0(x1) = RET

PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers Lecture 11 Slide 15

