
Lecture 11 Slide 1PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Lecture 11

Additional Topics

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

Lecture 11 Slide 2PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

5-stage Pipelining

tp1 tp2 tp3 tp4 tp5

Setup Time: DATA must reach its new value at least tS before the CLOCK­ edge.

Hold Time: DATA must be held constant for at least tH after the CLOCK­ edge.

Maximum processor clock frequency:
!

"#$ %!",%!#,%!$,%!%,%!& '%'

Lecture 11 Slide 3PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Deep Pipelining

tp1 tp2 tp3 tp4 tp5

logic logic logic logic logic

tp1 tp2 tpntp3 Tpn-1

• Cycle per instruction (CPI) for pipelined processor > 1 (e.g. 1.25), but higher clock frequency.

• Increase clock frequency by adding more pipeline stages by reducing worst-case 𝑡!.

• Deeper pipeline creates more data and control hazards, and more complex
detection/mitigation hardware.

• Register setup time also results in diminishing return.

• Example: 2015 Intel i7 uses 19-stage pipeline; ARM processor typically uses 13—stage pipeline.

Lecture 11 Slide 4PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

An Example on Pipelining

• A single-cycle processor with a propagation delay of 750ps is to be pipelined into N stages.

• Assume:
• Register overhead (i.e. setup time) is 90ps;
• Adding a pipeline stage does not increase hazard logic delay;
• 5 stage pipeline would result in a CPI of 1.25;
• Each additional pipeline stage add 0.1 to CPI due to branch and other hazards (stalling).

• How many pipeline stages gives best performance?

• Cycle time (i.e. clock period) is: 𝑇" =
#$%
&
+ 90 ps.

• CPI = 1.25 + 0.1(N-5), for N ≥ 5.

• Instruction time = 𝐶𝑃𝐼	×	𝑇"

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

Lecture 11 Slide 5PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Simple branch prediction

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

• So far, all branch instruction are assumed NOT TAKEN.

• Increased pipeline stages results in higher penalty (flushing) if branch IS TAKEN.

• Improve performance by adding ACCURATE branch prediction.

• STATIC branch prediction – forward branch assumes NOT TAKEN; backward branch
assumed TAKEN.

• SIMPLE DYNAMIC branch prediction – due historical information for prediction. The
simples is: Branch taken last time, predict will also be taken next time.

• Maintain a table of branch instructions and what happened most recently.

• The table is known as a branch target buffer which includes destination address of
branch and 1-bit history.

Lecture 11 Slide 6PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Two-bit Branch Predictor

10
times

• One-bit predictor:

Predicts correctly bge last time.

Mispredicts j first and last time.

• Mispredicts first and last time of
the loop.

• Overcome this with a two-bit
predictor:

• Four states = two-bits to encode the states.

• Mispredicts only the last branch of a loop.

Lecture 11 Slide 7PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Superscalar Processor

• Two-way superscalar – execute TWO instructions on each cycle (CPI = 0.5, IPC = 2).

• Instruction memory – 2 read ports, i.e. fetch 2 instructions per cycle.

• Two copies of the ALU.

• Register file double number of ports (i.e. 4 read ports and 2 write ports).

• Data memory – two read ports and two write ports.

• Two instructions progress through CPU at the same time.

Lecture 11 Slide 8PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Superscalar Processor - Example

• Instruction per cycle = 2

• No data or control hazard in this code.

Lecture 11 Slide 9PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Superscalar Processor with data hazard

• Forwarding does not help add instruction – need to insert stall cycle, then forwarding.

• Other dependencies handled by forwarding. 5 cycles to issue 6 instructions: IPC = 1.2.

Lecture 11 Slide 10PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Out-of-Order Superscalar Processor (1)

• Cycle 1: add, sub and and instructions use s8. Therefore, or instruction jumps ahead.

• Cycle 2: lw needs two cycle before data available. add can’t issue. sub use s8, cannot
issue. Therefore, only sw can be issued because S11 can be forwarded.

Lecture 11 Slide 11PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Out-of-Order Superscalar Processor (2)

• Cycle 3: Now add can be issued since s8 will be available, and sub can also go ahead.

• Cycle 4: The and can be issued.

• Six instructions in four cycles, IPC = 1.5 – better than 1.2 before.

Lecture 11 Slide 12PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

Topics not covered by this module

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

1. Computer arithmetics
- adders, multipliers, dividers

2. Bus interface (e.g. WishBone bus)
- Interface with main memory, peripherals etc.

3. Interrupt handling mechanism
- realtime applications, react to external events

4. Stack and Heap
- Memory management in high-level languages

Lecture 11 Slide 13PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

RISC-V Specific Omissions

Based on: “Digital Design and Computer Architecture (RISC-V Edition)”
by Sarah Harris and David Harris (H&H),

1. Control/Status Registers (CSRs)
2. Privileged mode vs User mode
3. Compressed instruction set (16-bit instructions)
4. Floating point architecture (64-bit)

Lecture 11 Slide 14PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

JAL instruction

• JAL instruction is used for subroutine calls. (Used in the REF program.)
• JTA = Jump Target Address = PC value + signed immediate offset
• PC is loaded with the JTA
• rd = return address = PC + 4, i.e. address of next instruction
• Note that the format of the immediate value is unusual. Bit 0 is always

0. In other word, offset is always an even number

Lecture 11 Slide 15PYKC 3 Dec 2024 EIE2 Instruction Architectures & Compilers

JALR instruction

• JALR instruction is also used for subroutine calls, but different from JAL.
• JTA = rs1 + SignExt(imm), i.e. derived from source register rs1
• Note that the immediate offset is only 12 bit and it is sign-extended to

32-bits before adding to rs1
• Finally, rd stores the return address

• SPECIAL CASE, JALR zero, 0(ra) or JALR x0, 0(x1) = RET

